skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gavane, Ajinkya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Rendering for light field displays (LFDs) requires rendering of dozens or hundreds of views, which must then be combined into a single image on the display, making real-time LFD rendering extremely difficult. We introduce light field display point rendering (LFDPR), which meets these challenges by improving eye-based point rendering [Gavane and Watson 2023] with texture-based splatting, which avoids oversampling of triangles mapped to only a few texels; and with LFD-biased sampling, which adjusts horizontal and vertical triangle sampling to match the sampling of the LFD itself. To improve image quality, we introduce multiview mipmapping, which reduces texture aliasing even though compute shaders do not support hardware mipmapping. We also introduce angular supersampling and reconstruction to combat LFD view aliasing and crosstalk. The resulting LFDPR is 2-8x times faster than multiview rendering, with similar comparable quality. 
    more » « less
  2. Eye-based point rendering (EPR) can make multiview effects much more practical by adding eye (camera) buffer resolution efficiencies to improved view-independent rendering (iVIR). We demonstrate this very successfully by applying EPR to dynamic cube-mapped reflections, sometimes achieving nearly 7× speedups over iVIR and traditional multiview rendering (MVR), with nearly equivalent quality. Our application to omnidirectional soft shadows is less successful, demonstrating that EPR is most effective with larger shader loads and tight eye buffer to off-screen (render target) buffer mappings. This is due to EPR's eye buffer resolution constraints limiting points and shading calculations to the sampling rate of the eye's viewport. In a 2.48 million triangle scene with 50 reflective objects (using 300 off-screen views), EPR renders environment maps with a 49.40ms average frame time on an NVIDIA 1080 Ti GPU. In doing so, EPR generates up to 5x fewer points than iVIR, and regularly performs 50× fewer shading calculations than MVR. 
    more » « less
  3. Yang, Yin and (Ed.)
    This paper describes improvements to view independent rendering (VIR) that make it much more useful for multiview effects. Improved VIR's (iVIR's) soft shadows are nearly identical in quality to VIR's and produced with comparable speed (several times faster than multipass rendering), even when using a simpler bufferless implementation that does not risk overflow. iVIR's omnidirectional shadow results are still better, often nearly twice as fast as VIR's, even when bufferless. Most impressively, iVIR enables complex environment mapping in real time, producing high-quality reflections up to an order of magnitude faster than VIR, and 2-4 times faster than multipass rendering. 
    more » « less